

Programming in C# | Page 1 of 2

MOC20483 – Programming in C#

Duration: 5 Days; Instructor-led

COURSE DESCRIPTION

This training course teaches developers the

programming skills that are required for developers

to create Windows applications using the C#
language. During their five days in the classroom

students review the basics of C# program structure,

language syntax, and implementation details, and
then consolidate their knowledge throughout the

week as they build an application that incorporates

several features of the .NET Framework 4.5.

The course introduces many of the techniques and

technologies employed by modern desktop and
enterprise applications, including:

• Building new data types.

• Handling events.

• Programming the user interface.
• Accessing a database.

• Using remote data.

• Performing operations asynchronously.
• Integrating with unmanaged code.

• Creating custom attributes.

• Encrypting and decrypting data.

At the end of the course, students should leave the

class with a solid knowledge of C# and how to use it
to develop .NET Framework 4.5 applications.

This course uses Visual Studio 2012, running on

Windows 8.

AUDIENCE
This course is intended for experienced developers who
already have programming experience in C, C++,
JavaScript, Objective-C, Microsoft Visual Basic, or Java
and understand the concepts of object-oriented
programming.

This course is not designed for students who are new
to programming; it is targeted at professional
developers with at least one month of experience
programming in an object-oriented environment.

PREREQUISITES
Developers attending this course should already have
gained some limited experience using C# to complete
basic programming tasks. More specifically, students
should have hands-on experience using C# that
demonstrates their understanding of the following:
• How to name, declare, initialize, and assign values

to variables within an application.
• How to use:
• arithmetic operators to perform arithmetic

calculations involving one or more variables.
• relational operators to test the relationship

between two variables or expressions.

• Logical operators combine expressions that contain
relational operators.

• How to create the code syntax for simple
programming statements using C# language
keywords and recognize syntax errors using the
Visual Studio IDE.

• How to create a simple branching structure using
an IF statement.

• How to create a simple looping structure using a
For statement to iterate through a data array.

• How to use the Visual Studio IDE to locate simple
logic errors.

• How to create a Function that accepts arguments
(parameters and returns a value of a specified
type.

• How to design and build a simple user interface
using standard controls from the Visual Studio
toolbox.

• How to connect to a SQL Server database and the
basics of how to retrieve and store data.

• How to sort data in a loop.
• How to recognize the classes and methods used in

a program.

METHODOLOGY
This program will be conducted through Instructor-led
(classroom)

WHAT YOU WILL LEARN
After completing this course, students will be able to:
• Describe the core syntax and features of C#.
• Create and call methods, catch and handle

exceptions, and describe the monitoring
requirements of large-scale applications.

• Implement the basic structure and essential
elements of a typical desktop application.

• Create classes, define and implement interfaces,
and create and use generic collections.

• Use inheritance to create a class hierarchy, extend
a .NET Framework class, and create generic
classes and methods.

• Read and write data by using file input/output &
streams, and serialize and deserialize data in
different formats.

• Create and use an entity data model for accessing
a database and use LINQ to query and update data.

• Use the types in the System.Net namespace and
WCF Data Services to access and query remote
data.

• Build a graphical user interface by using XAML.
• Improve the throughput and response time of

applications by using tasks and asynchronous
operations.

• Integrate unmanaged libraries and dynamic
components into a C# application.

• Examine the metadata of types by using reflection,
create and use custom attributes, generate code at
runtime, and manage assembly versions.

• Encrypt and decrypt data by using symmetric and
asymmetric encryption.

Programming in C# | Page 2 of 2

COURSE OUTLINE

Module 1: Review of Visual C# Syntax
• Overview of Writing Application by Using Visual C#
• Data Types, Operators, and Expressions
• Visual C# Programming Language Constructs

Module 2: Creating Methods, Handling

Exceptions, and Monitoring

Applications
• Creating and Invoking Methods
• Creating Overloaded Methods and Using Optional

and Output Parameters
• Handling Exceptions

Module 3: Basic types and constructs of Visual
C#

• Implementing Structs and Enums
• Organizing Data into Collections
• Handling Events

Module 4: Creating Classes and Implementing
Type-Safe Collections

• Creating Classes
• Defining and Implementing Interfaces
• Implementing Type-Safe Collections

Module 5: Creating a Class Hierarchy by Using
Inheritance

• Creating Class Hierarchies
• Extending .NET Framework Classes

Module 6: Reading and Writing Local Data
• Reading and Writing Files
• Serializing and Deserializing Data
• Performing I/O by Using Streams

Module 7: Accessing a Database
• Creating and Using Entity Data Models
• Querying Data by Using LINQ

Module 8: Accessing Remote Data
• Accessing Data Across the Web
• Accessing Data by Using OData Connected

Services

Module 9: Designing the User Interface for a

Graphical Application
• Using XAML to Design a User Interface
• Binding Controls to Data

Module 10: Improving Application
Performance and Responsiveness

• Implementing Multitasking
• Performing Operations Asynchronously
• Synchronizing Concurrent Access to Data

Module 11: Integrating with Unmanaged Code
• Creating and Using Dynamic Objects
• Managing the Lifetime of Objects and Controlling

Unmanaged Resources

Module 12: Creating Reusable Types and
Assemblies

• Examining Object Metadata
• Creating and Using Custom Attributes
• Generating Managed Code
• Versioning, Signing, and Deploying Assemblies

Module 13: Encrypting and Decrypting Data
• Implementing Symmetric Encryption
• Implementing Asymmetric Encryption

