

C + + (B a s i c) P a g e 1 | 5

SE001CPP: C++ Basic

DURATION: 5 Days

WHAT YOU WILL LEARN
This five-day instructor-led course provides to teach
the basic of C/C++ language

The approach used is theory followed by powerful

seriously designed exercises to reinforce the
understanding of the theory.

Besides the language syntax, many aspect of the
course are intended to make the participants as
better software developer, especially using C++ as
programming tool. Many of the aspects covered in
this course will benefit the participants in many other
project developments.

This course does not cover the OOP aspect of C++ in
detail. It is focusing on most of the language

construct that can be used for both C and C++

Upon completion of this course, participants should
be able to:

• Apply different programming constructs in
C++ appropriately.

• Solve moderate size problems using C++.
• Understand the how to work in a team in

software development with C++.
• To use C++ as better C.
• Use IDE to create a moderate size of

project.

AUDIENCE
This course is for programmers who intend to learn
C++.

PREREQUISITES
Before attending this course, students must have:

• Basic understanding of operating system.

• Basic knowledge of computer hardware.

• Basic programming concept will be added
advantage.

COURSE OUTLINES

Module 1: Introducing to the IDE
This module explains how to use the Integrated
Development environment for developing C++
program/project
Lessons

• The project templates

• The editor

• The compiler

• The main() function

• Different type of programming errors

• Using debugger

• How to get help

• Running the program

Lab: Using IDE features

• Exercise 1: GCD solution

• Exercise 2: How to use debugger

• Exercise 3: Using help from the IDE

After completing this module, students will be able

to:

• Use the IDE to create a simple C/C++
program

• Use Debugger to find the programming
mistakes

• Run programs from the IDE

• Seeking help from the IDE

Module 2: C/C++ fundamentals
This module will brief students the fundamental
features of C/C++ language constructs
Lessons

• Identifier and the rules in naming

• Single line and block comments

• Command line arguments

• The return value from main() function

• Functions as building block

• Naming Convention

• Sequential Statements

• Simple I/O with cin and cout classes

• Preprocessing
o Macro constant
o Macro Functions

• const Vs. macro constants

Lab: Basic language constructs

• Exercise 1: GCD solution with input from
command line arguments

• Exercise 2: GCD solution with user input

• Exercise 3: Using macro constant or const
to minimize changes

• Exercise 4: Using macro function

After completing this module, students will be able

to:

• Utilize arguments to pass values from
command line

• Get input from user during running time
instead of hardcode the values in programs.

• Apply macro constant to minimize hard
coding and increase flexibility of coding

• Differentiate const and macro constant and
apply them appropriately

Module 3: Conditional statements
This module will cover various conditional statements

in C/C++
Lessons

• Conditions, Composite conditions, and
Boolean logic

• Zero is false, none zero is true

• “Short circuit” in composite conditions

• Branching Statement

C + + (B a s i c) P a g e 2 | 5

o Unconditional goto Statement
o if-Then, if-Then-else, and Nested If
o switch..case..default Statement

Lab: Understand conditions

• Exercise 1: Conditional AND, OR, XOR and
NOT

• Exercise 2: Short Circuit

• Exercise 3: Fall through in switch case
statement

After completing this module, students will be able
to:

• Understand various conditional logics

• Avoid problem caused by the short circuit in
composite conditions

• Provide code readability in the switch case
statement.

Module 4: Iteration Statements
This module explains various types of iteration
statements in C/C++
Lessons

• do-while statement
• while–do statement
• for statement
• goto statement
• break statement in iteration

• continue statement in iteration
• Busy loop
• The principal of “One in one out”

Lab: Understand iteration statements

• Exercise 1: Iteration with goto statement

• Exercise 2: Busy loop and break statement

• Exercise 3: Using continue statement
After completing this module, students will be able

to:

• Understand various conditional and
unconditional iteration statement

• Preserve good practice using the principal of
“One in one out”

• Apply busy loop adequately.

Module 5: Data Types
This module explains various data types in C/C++.
Lessons

• Data Types Concept
o Number of bytes needed for

representing the data
o Value range represented
o Acceptable Value types
o Valid operations on the data

• Simple/native data types
• The sizeof keyword
• Variables

o Variable naming: Pascal and camel
styles

o Declaration and Scoping

o Shadowing and Scope resolution
operator

• Type casting
• Bit Fields

• Union
• New types in C++

Lab: Understand data types

• Exercise 1: Apply appropriate data types

• Exercise 2: Using sizeof keyword

• Exercise 3: Variable shadowing and scope
resolution operator

• Exercise 4: Type casting

• Exercise 5: Union and bit fields

After completing this module, students will be able

to:

• Select adequate data types to represent the
data

• Make use of sizeof in writing better code

• Avoid the shadowing issue and resolve it
using scope resolution operator

• Understand the meaning of type casting and
its consequences

• Use union and bit fields

Module 6: Storage class
This module explains the meaning of storage class, and
relates it to the variable/object life cycle.

Lessons
• Data segment, Stack, and Heap
• auto, static, extern and register keywords
• Constraint on the register variables
• Register parameters
• Variable/Object Life Cycle

Lab: Understand storage classes

• Exercise 1: Automatic variables

• Exercise 2: Register variables/parameters

• Exercise 3: Hiding variables in the module

• Exercise 4: Variable/Object life cycle

After completing this module, students will be able
to:

• Know where is the variables/objects defined
during program runtime

• Understand various types of storage classes
in C/C++ and choose the right one

appropriately

• Appreciate the relationship between storage
class and variable/object life cycle.

Module 7: Expressions and operators

This module explains expression and operator concept
in C/C++ programs
Lessons

• Operators and operands
• The expression
• Operators

o Arity
o Precedence
o Association

• Operator Types
o Assignment

o Arithmetic
o Comparison
o Logical

C + + (B a s i c) P a g e 3 | 5

o Bitwise
• Pitfall of the / operator
• The new rules of assignment operator in C++

Lab: Using operators

• Exercise 1: Operator precedence

• Exercise 2: The ?: operator

• Exercise 3: The ++ and -- operators

• Exercise 4: Integer division vs floating
point division

• Exercise 5: Assignment operator in
conditional expression

• Exercise 6: Dealing with bits with bitwise
operators

• Exercise 7: New face of assignment
operator in C++

After completing this module, students will be able

to:

• Apply common operators used in
expressions.

• Differentiate the sequence of ++ and - -
operators in expression

• Avoid common errors caused by / operator

• Use ?: in expression to simplify coding

• Understand the use of assignment operator

• Distinguish the differences of assignment
operator between C and C++.

Module 8: Compiler directives and constants
This module explains various important compiler
directives and constants used in C/C++ programs
Lessons

• Compiler directives
o #include
o #define
o #if .. #elif .. #else..#endif
o #ifdef
o #error
o #undef

o #pragma
o ##

• Compiler Constants
o __FILE__
o __LINE__
o __DATE__
o __TIME__
o __cplusplus

Lab: Using compiler directives

• Exercise 1: Compiler directive for portability

• Exercise 2: Conditional compilation

• Exercise 3: Forcing error during compilation

• Exercise 4: Forget the definition

• Exercise 5: Control reentrant

• Exercise 6: Source level debugging using
compiler constants

After completing this module, students will be able

to:

• Use compiler directive to create portable
code

• Apply conditional compilation by using
compiler directives.

• Display custom error massage during
compile time

• Undefine definition from the compiler

• Avoid reentrant by using compiler directives

• Utilize compiler constants in source level
debugging

Module 9: Pointers
This module explains pointer concept in C/C++, which
is one of the most challenging aspects of the language.

Lessons
• Pointers is simple/native type
• The value Vs address of the storage.
• Parameter passing by value for pointer
• The power of indirect access
• Addressing Arithmetic
• Pointer casting
• void pointer
• Pointer of pointers
• Pointer to functions

Lab: Showing the power of pointers

• Exercise 1: Variable value and address

• Exercise 2: Pointer is a native type

• Exercise 3: Parameter passing by value

• Exercise 4: The power of indirect access

• Exercise 5: Addressing arithmetic

• Exercise 6: Playing naughty with pointer
casting

• Exercise 7: The power of pointer to void

• Exercise 8: Dynamic behavior with pointer
to function

After completing this module, students will be able

to:

• Differentiate the value and address of
variables

• Agree that pointer is a native type

• Appreciate the power of using pointer for
indirect access

• Understand how the pointer arithmetic
works

• Use pointer casting in special cases

• Apply pointer to void appropriately

• Write dynamic behavior code using pointer
to function.

Module 10: Character and String

This module explains the character and string concepts
Lessons

• char as integer type
• Coding scheme

o ASCII
o Unicode

• Code Vs value
• Control characters
• Characters and String
• String terminator

C + + (B a s i c) P a g e 4 | 5

• Escape characters in string
• String manipulation

o Concatenation
o Trimming
o Etc.

• String and pointer
• Standard string manipulation functions

Lab: Dealing with Strings

• Exercise 1: Use char as one byte integer

• Exercise 2: ASCII code and ASCII value

• Exercise 3: SToUppper() function

• Exercise 4: char*

• Exercise 5: Using standard string
manipulation functions

After completing this module, students will be able

to:

• Understand the relationship between char
type and integer type

• Appreciate what are the ASCII and Unicode
coding schemes

• Understand the string concept in C/C++

• Understand the relationship between string
and pointer

• Write basic string manipulation functions

• Use some standard string manipulation
functions

Module 11: Complex types

This module explains the concept of complex types in
C/C++. More details explanation covered both
homogenous and heterogeneous complex types.
Lessons

• Homogeneous Complex Data Type：Array

• Array indexing and out of bound issue
• Open declaration
• Optional last comma
• The use of sizeof keyword on array
• Multidimensional Array
• Array and pointers
• Heterogeneous Complex Types: struct

(Record)
• Accessing items in a record
• Pointer to record

• The . and -> operator
• Record of record
• Array of Record

Lab: Using operators

• Exercise 1: Sorting

• Exercise 2: Matrix multiplication

• Exercise 3: char* buf Vs char buf[]

• Exercise 4: Student records

After completing this module, students will be able
to:

• Understand the concept of complex types in
C/C++

• Distinguish the arrays and pointers

• Define multi dimensional arrays.

• Use struct types

• Apply special notation for complex types
correctly

• Construct complex in complex types

Module 12: Dynamic Allocation
This module explains the concept of dynamic allocation
and understand why it is needed in C/C++.
Lessons

• Non deterministic during compile time:
Dynamic Allocation

• The Heap’s story
• new operator Vs malloc function
• delete operator Vs free function
• The different between delete and delete[]
• Dynamic allocation and pointers
• Issues with dynamic allocation

o Memory leaking
o Memory fragmentation
o Pointer overrun

Lab: Apply Dynamic Allocation

• Exercise 1: Variable inputs

• Exercise 2: Memory leaking

• Exercise 3: Pointer overrun

After completing this module, students will be able
to:

• Understand the why dynamic allocation is
needed

• Use dynamic allocation for both C and C++
styles

• Appreciate the pitfalls of Dynamic Allocation

• Relate the Dynamic Allocation with pointers

Module 13: Functions
This module explains more features about functions in
C++
Lessons

• Function prototyping
• Multiple modules project
• static functions
• Header files

o What should be there?

• Parameter passing by value
• Passing address as value using pointer

parameter
• The Synonym and Parameter passing by

reference
• Function Overloading
• Default parameter value
• Function return types

o Complex return
o Return by reference

• Recursive function call
• auto variables and static variables

• Stack overflow

Lab: More Function challenges

• Exercise 1: Multi module project

• Exercise 2: Swap() function

• Exercise 3: Sum() function

• Exercise 4: Return by Complex

• Exercise 5: Return by reference

C + + (B a s i c) P a g e 5 | 5

• Exercise 6: Magic3x3

• Exercise 7: static variable

• Exercise 8: Stack overflow

After completing this module, students will be able
to:

• Appreciate the needs of function prototyping

• Handle multiple modules projects

• Understand why header files is needed and
what should be kept in there.

• Differentiate various types of parameter
passing in C/C++

• Differentiate the return type of C and C++

• Apply function overloading and default
parameter value, and aware the conflict
occurs

• Use recursive technique in solving complex
problems

• Understand the stack overflow issue.

• Use auto and static appropriately.

