

SE009J - Refactoring to Pattern in Java | Page 1 of 2

SE009J - Refactoring to Pattern in Java

Duration: 3 Days; Instructor-led

WHAT YOU WILL LEARN
This course refactors and restructures GoF, and much
more. It takes a subject that has been presented as
static and rigid and makes it dynamic and flexible,
converting it into a human process with experiments,
mistakes, and corrections so you understand that good

designs do not occur by turning some series of cranks—
they evolve through struggle and reflection.

With this unique catalog of design-level refactoring the
course given refactoring an entirely new dimension. It
shows developers how to make design-level
improvements that simplify everyday work.

The course provides step-by-step instructions on how to
improve your code through the methodical introduction
of appropriate patterns, but more so because it teaches

the principles that underlie the design patterns
implemented.

In GoF Design Patterns claimed that it is targeting for
refactorings. This course shows that how to realize the
claim by deepen your understanding of both refactoring
and design patterns.”

AUDIENCE
This course should be useful for novice and expert

designers alike. It is an invaluable reference for the
refactoring practitioner

PREREQUISITES
REQUIRED PREREQUISITES:
• Basic knowledge and skill in Java.
• At least 3 years of experience in software

development and preferably with basic
understanding of software design patterns.

METHODOLOGY
This program will be conducted with interactive lectures,
PowerPoint presentations, discussions and practical
exercises

COURSE OUTLINES

Module 1 - Introduction
• The Patterns Panacea
• Under-Engineering
• Test-Driven Development and Continuous

Refactoring
• Refactoring and Patterns
• Evolutionary Design

Module 2 – Refactoring
• What Is Refactoring?
• The motivations to refactor.
• Human-Readable Code
• Keeping It Clean
• Small Steps
• Design Debt
• Evolving a New Architecture
• Composite and Test-Driven Refactorings
• The Benefits of Composite Refactorings
• Refactoring Tools

Module 3 – Patterns
• What Is a Pattern?
• Very brief introduction to the GoF Patterns
• There Are Many Ways to Implement a Pattern
• Refactoring to, towards, and away from

Patterns
• Do Patterns Make Code More Complex?
• Pattern Knowledge
• Up-Front Design with Patterns

Module 4 – The Indicators
• Duplicated Code
• Long Method
• Conditional Complexity
• Primitive Obsession
• Indecent Exposure
• Solution Sprawl
• Alternative Classes with Different Interfaces
• Lazy Class
• Large Class
• Switch Statements

• Combinatorial Explosion
• Oddball Solution

Module 5 - A Catalog of Refactorings to Patterns

• Format of the Refactorings
• Projects Referenced in This Catalog
• A Starting Point
• A Study Sequence

Module 6 – Creation
• Replace Constructors with Creation Methods
• Move Creation Knowledge to Factory
• Encapsulate Classes with Factory
• Introduce Polymorphic Creation with Factory

Method
• Encapsulate Composite with Builder
• Inline Singleton

Module 7 - Simplification
• Compose Method

• Replace Conditional Logic with Strategy
• Move Embellishment to Decorator
• Replace State-Altering Conditionals with State
• Replace Implicit Tree with Composite
• Replace Conditional Dispatcher with Command

Module 8 - Generalization

Introduction to Software Design Pattern in Java | Page 2 of 2

• Form Template Method
• Extract Composite
• Replace One-Many Distinctions with Composite
• Replace Hard-Coded Notifications with

Observer
• Unify Interfaces with Adapter
• Extract Adapter

• Replace Implicit Language with Interpreter

Module 9 - Protection
• Replace Type Code with Class

• Limit Instantiation with Singleton

• Introduce Null Object

Module 10 - Accumulation
• Move Accumulation to Collecting Parameter
• Move Accumulation to Visitor

Module 11 - Utilities
• Chain Constructors
• Unify Interfaces
• Extract Parameter

