

Defensive Programming in C# | Page 1 of 1

SE012CS - Defensive Programming in C#

DURATION: 3 Days; Instructor-led

WHAT YOU WILL LEARN

Defensive programming is sometimes referred to as
secure programming by computer scientists who state
this approach minimizes bugs. It is a form of defensive
design intended to ensure the continuing function of a

piece of software under unforeseen circumstances.

In this course audience will learn how to adopt defensive
programming techniques to improve software and
source code, in terms of:

• General quality - reducing the number of software

bugs and problems.
• Making the source code comprehensible - the

source code should be readable and understandable
so it is approved in a code audit.

• Making the software behave in a predictable manner

despite unexpected inputs or user actions.

The course ended with a daylong case study to enforce
the audience understanding of the subject matters.

AUDIENCE
This course should be useful for novice and expert C#
developers. It is an invaluable training for the
developers who are serious about quality in coding.

PREREQUISITES:
• Basic knowledge and skill in C#.
• At least 3 years of experience in software

development.

METHODOLOGY
This program will be conducted with interactive lectures,

PowerPoint presentations, discussions, practical
exercises and Case Study

COURSE OUTLINES

Module 1 - Introduction
• What is Defensive Programming?

• Clean Code
• Testable Code and Unit Tests
• Predictable Code

Module 2 – Defending Your Methods - Part 1
• Clean, Testable, and Predictable Methods
• Example Clean, Testable, and Predictable

Methods
• Demo Creating a Class Library Component
• Demo Clean, Testable, and Predictable Methods
• Demo Named Arguments

Module 3 – Defending Your Methods - Part 2
• Validating Method Parameters

• Demo Validating Method Parameters
• Demo Method Overloading

Module 4 – Automated Code Testing

• Why automated testing?
• Code First vs. Test First
• Defining Unit Test Cases
• Creating Unit Tests
• Using Test Explorer
• Generating Unit Tests

• Unit Tests and Exceptions
• Dependencies

Module 5 - Returning Predictable Results

• Method Results
• Demo Returning a Value
• Demo Returning Exceptions
• Demo Returning Multiple Values
• Returning Null

Module 6 – Defending Your Code Constructs
• Local Variable Declarations
• If Statements
• Switch Statements
• Enums
• Casting

Module 7 - Asserts, Errors, and Exceptions

• Demo Preparing the Sample Code

• Asserts
• Anticipated Errors
• Unexpected Exceptions and a Global Exception

Handler
• Exception Handling

Module 8 – Design by Contract

• Introduction
• Tolerant Vs Demanding coding styles
• Pre-Conditions

• Post-Conditions
• Class Invariant
• Loop Invariant

Module 9 – Case Study

• 8-Puzzle

